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A non-linear eddy viscosity/diffusivity model for turbulent flows is presented, featuring quadratic consti-
tutive relationships for both Reynolds stresses and scalar fluxes. Model coefficients are defined by enforc-
ing compliance with fundamental experimental evidence, and realizability of both the velocity and scalar
fields, which is achieved by making coefficients depend upon an appropriately defined strain parameter.
The model is also shown to satisfy joint-realizability. The model is extensively tested against experimen-
tal results for confined swirling flows, encompassing a wide range of values of the swirl number, momen-
tum and density ratios. The results unambiguously indicate a remarkable, uniform improvement over
standard modelling. Further, previous work on the subject of nonlinear models is reviewed.
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1. Introduction

Non-linear eddy viscosity models (NLEVMs) appear as potential
candidates to replace the well-tried k–� model (Jones, 1971; Jones
and Launder, 1972) (with minor re-optimisation of the model con-
stants as in Launder and Spalding (1974)) as a ‘workhorse’ for the
computation of turbulent flows. The k–� and other linear eddy vis-
cosity models are known to exhibit fundamental shortcomings,
particularly in their inability to reproduce flows featuring recircu-
lation and/or swirl, streamline curvature and secondary flows in
non-circular ducts. Similar deficiencies are evident in flows involv-
ing scalar transport related in particular to the largely underesti-
mated ratio of stream wise to transverse turbulent fluxes in
heated/cooled channel or pipe flows and scalar fluctuations in
buoyant flows that are also poorly reproduced. To correct this
behaviour, non-linear models, here termed non-linear eddy diffu-
sivity models (NLEDMs), have been proposed. However, finding a
suitable replacement for the standard k–� model appears to be a
major challenge; despite the above mentioned weaknesses, it
nonetheless features undeniable virtues. These are related to its
relative ease of use and robustness and to the fact that it is well-
calibrated, so that it leads to acceptable results in many cases. This
is in spite of the fact that while a term-by-term analysis of the
model undoubtedly reveals inadequacies, the resulting negative
impact on the quality of predictions is limited, due to compensat-
ing errors. A plethora of NLEVMs and (to a smaller extent) NLEDMs
have been proposed in recent years. Such a proliferation is clearly a
ll rights reserved.

s).
consequence of the large number of undetermined coefficients
appearing in the non-linear expansions of Reynolds stresses and
scalar fluxes, which can be specified according to different criteria.
A categorization of these models can be attempted, based on the
following criteria:

(a) Possible inclusion of higher-order derivatives.
(b) Choice of variables to identify turbulent velocity and length

scales.
(c) Order of the polynomial expansion.
(d) Relationship to second-moment models.

As far as item (a) is concerned, it can be observed that by far the
vast majority of non-linear models adopt forms which only feature
the first derivatives of the mean velocity components and of the
mean scalar. However, a small number of NLEVMs (Speziale,
1987; Huang and Rajagopal, 1996) start from a form including
the second-derivatives of the mean velocity components. The latter
choice, although supposedly involving some advantage raises the
order of the resulting RANS equations above that of the original
Navier–Stokes equation with the consequence that boundary con-
ditions are required for the mean velocity components and their
spatial gradients.

Item (b) also features two options, with one being overwhelm-
ingly more popular than the other. In fact, whereas practically all
models choose the square root of the turbulent kinetic energy

ffiffiffi
k
p

as a turbulent velocity scale, either the mechanical dissipation rate
� or a pseudo-vorticity x can be used to construct a turbulent time
scale, with the latter approach representing an extension of the
(linear) k–x model (Saffman, 1970; Wilcox, 1993). The vast
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majority of non-linear models adopt � as the second variable,
whilst a few prefer x (Wilcox, 1993; Abdon and Sundén, 2001;
Merci et al., 2001; Song et al., 2001). One-equation NLEVMs,
involving only an equation for k, have also been proposed (Spalart
and Shur, 1997; Spalart, 2000).

The near majority view above is not replicated for the two
remaining items. In particular, as far as item (c) is concerned,
NLEVMs have been proposed adopting quadratic (Speziale, 1987;
Gatski and Speziale, 1993; Shih et al., 1993, 1995; Spalart and Shur,
1997; Luo and Lakshminarayana, 1997; Gatski and Jongen, 2000;
Rumsey et al., 2000; Rahman et al., 2001; Wen et al., 2001; Fu
and Qian, 2002; Abe et al., 2003) cubic (Craft et al., 1996; Shih
et al., 1997; Lien and Leschziner, 1996; Wallin and Johansson,
2000; Abdon and Sundén, 2001; Merci et al., 2001; Palaniswami
et al., 2001; Song et al., 2001), or even quartic – though incomplete
(Craft et al., 1995; Wallin and Johansson, 2000), constitutive rela-
tionships for the Reynolds stress. In contrast practically all the pro-
posed NLEDMs (Launder, 1988; Hanjalić, 1994; Abe and Suga,
2001; Knoell and Taulbee, 2001; Park and Sung, 2001; Rokni and
Gatski, 2001; Rokni and Sundén, 2003; Abe et al., 2003; Nagaoka
and Suga, 2003; Suga, 2003) belong to the quadratic family.

Lastly, item (d) refers to the methodology adopted in formulat-
ing NLEVMs and NLEDMs. While some authors simply postulate a
non-linear expression for turbulent stresses and/or fluxes, and
determine the coefficients by imposing appropriate conditions,
others recover a non-linear expression by simplifying second-mo-
ment closure models. In particular, algebraic stress models (ASMs)
assume that the anisotropy tensor is conserved along a streamline
(though a different condition has also been proposed (Rumsey
et al., 2001) to account for curvature effects), and that the rate of
change and diffusion of the anisotropy is linearly related to the rate
of change and diffusion of the turbulence kinetic energy. This ap-
proach, originally proposed by Rodi (1972, 1976), leads to implicit
forms for the Reynolds stresses. The resulting expressions are
rather complex, and cannot be strictly classified as NLEVMs; fur-
thermore ASMs are often reported to give convergence problems
in numerical solutions. Gatski and Speziale (1993), Speziale
(1997) and Girimaji (1996, 2001), by adopting a non-linear form
in an appropriate tensor basis, recover an explicit non-linear
expression, termed an explicit algebraic stress model (EASM), see
also Park and Sung (1995), Gatski and Jongen (2000), Knoell and
Taulbee (2001), Fu and Qian (2002), Wallin and Johansson
(2002). On the basis of their close relationship to second-moment
closures the authors claim these to be more powerful than ordin-
ary NLEVMs. However, it has to be said that a full tensor basis re-
quires five terms; when fewer terms are used, as is usually the
case, the resulting model amounts rather to a least-square fit. Fur-
thermore singular expressions can result in some situations, there-
by requiring a ‘regularization’ of the expressions for the stresses
(Gatski and Speziale, 1993; Gatski and Jongen, 2000), which then
depart from those of the parent second-moment model. Other real-
izability constraints related to EASMs are discussed by Durbin and
Petterson-Reif (1999) and Weis and Hutter (2003).

A similar distinction can be drawn for scalar transport between
those in which a non-linear expression for the scalar fluxes is sim-
ply postulated and those in which a similar form is obtained as a
result of simplifications to second-moment closures for the scalar
fluxes. Such simplifications lead to implicit algebraic expressions
for the latter; again, by adopting an appropriate basis, the model
can be expressed in explicit form, sometimes termed an explicit
algebraic heat flux model (EAHM) (Weigand et al., 2002; Park
et al., 2003). The full basis in this case requires 10 terms and the
development of such a full model has not yet been attempted. Thus
current models can be considered as least-square fits to full
EAHMs. As for the Reynolds stresses, singularities can arise for
the scalar fluxes and ‘regularization’ is then required. An alterna-
tive widely used expression for the scalar fluxes is the generalized
gradient diffusion hypothesis (GGDH), stemming from application
of a higher-order model, (Daly and Harlow, 1970) to heat fluxes
(Launder, 1988), which also conserves some relation to second-
moment models. It has been used extensively (Hanjalić, 1994;
Abe and Suga, 2001; Rokni and Gatski, 2001; Suga, 2003); a high-
er-order version (HOGGDH) has also been proposed (Nagaoka
and Suga, 2003).

The near-wall behaviour of non-linear models have been ad-
dressed by a number of authors (Knoell and Taulbee, 2001; Merci
et al., 2001; Rahman et al., 2001; Rumsey et al., 2001; Abe et al.,
2003; Park et al., 2003). Non-linear models have also been ex-
tended to deal with high-speed flows, (Palaniswami et al., 2001),
two-phase flows (Mashayek and Taulbee, 2002a; Mashayek and
Taulbee, 2002b; Zhou and Gu, 2002), buoyant flows (Wen et al.,
2001; So et al., 2002), fluids exhibiting very small (such as liquid
metals) or large (liquids) Prandtl numbers (Abe and Suga, 2001;
Weigand et al., 2002), or even viscoelastic behaviour (Mompean,
2002; Mompean et al., 2003). This serves to emphasise the practi-
cal importance currently attached to non-linear constitutive equa-
tions. The critical point in the derivation of non-linear models is
the determination of the model coefficients. Compliance with
experiments, realizability, and criteria borrowed from thermody-
namics have been used. Incidentally, the circumstance that the
modelled equations can switch their nature from parabolic to
hyperbolic due to an inappropriate choice of the model coefficients
was recognized by Weigand et al. (2002).

In the present work non-linear constitutive equations, involving
quadratic forms, are devised to allow both the Reynolds stresses
and scalar fluxes to be determined. A quadratic form is selected
in order to depart relatively little from the well-tried standard k–
�model and also because, in previous work, the effect of higher-or-
der terms proved to be relatively small (Abdon and Sundén, 2001).
As in all similar approaches the present formulation involves a sig-
nificant number of undetermined parameters. However, it is
shown that the imposition of realisability constraints – positivity
of the normal stresses and satisfaction of Schwarz’s inequality by
the shear stresses and compliance with extremum principles for
scalar quantities – results in a substantial reduction in the number
of free parameters. The remaining free constants and parameters
are then determined by recourse to measurements in simple
canonical shear flows. The enforcement of realisability constraints
on the Reynolds stresses is achieved mainly through consideration
of thin shear flows and mixing layers and, while realisable results
are not guaranteed under all general strain conditions, this is
clearly a prerequisite to ensuring realisability in more complex
flows. None of the currently available non-linear eddy diffusivity
models (NLEDM) appear to take account of extremum principles,
a consequence of which is that the maximum and minimum values
of a strictly conserved scalar quantity arising in any steady solution
must lie on the boundaries of the solution domain. Satisfaction of
this constraint is of paramount importance in many practical appli-
cations and a failure to do so can have catastrophic consequences
in computations; species mass fractions less than zero and greater
than unity can arise and, for heat transfer problems, temperature
profiles may violate the second law. In the present paper a condi-
tion on the model coefficients is explicitly enforced to ensure com-
pliance with extremum principles. The resulting complete model,
termed a non-linear eddy viscosity and diffusivity model
(NLEVDM), is also shown to satisfy joint realisability.

Section 2 presents the proposed form of the constitutive rela-
tionship for the Reynolds stresses, and discusses the criteria
adopted to identify the NLEVM coefficients. These are defined as
a function of an appropriate strain parameter, with the aim of pre-
venting the occurrence of unphysical situations. Similarly, Section
3 presents the form of the constitutive relationships for scalar
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fluxes, and discusses the criteria adopted to identify the NLEDM
coefficients, which are also prescribed as a function of the previ-
ously defined strain parameter, again in order to ensure physically
realizable solutions. The performance of the proposed models is
investigated in Section 4. The accurate prediction of flows in com-
bustion chamber and furnaces, in which swirl is routinely adopted,
and more generally in devices involving heat and/or mass transfer,
calls for improved modelling of both Reynolds stresses and scalar
fluxes. Accordingly, the models are applied to a range of confined
swirling flows, covering a range of swirl numbers and momentum
and density ratios; both inert and reacting flows are considered. In
the test cases considered the details of the flow in the vicinity of
the walls do not play a significant role – attention is focused on
measurements taken well inside the flow. Accordingly, a wall-
function approach is adopted in order to save computer time.
The results of the computations are compared extensively with
measurements of mean velocity and the components of the Rey-
nolds stress and scalar fluxes, thereby enabling an accurate evalu-
ation of the performance of the models. Finally, conclusions are
drawn in Section 5.
2. Non-linear eddy viscosity model (NLEVM)

In formulating constitutive relationships for stress it is conven-
tional to separate the velocity gradient oui=oxj into a symmetric
part – the rate of deformation, Sij ¼ 1

2 ðoui=oxj þ ouj=oxiÞ – and anti-
symmetric part – the rotation tensor, Xij ¼ 1

2 ðoui=oxj � ouj=oxiÞ. The
reasoning behind this separation is that the stress in a fluid contin-
uum is independent of fluid rotation and the stress then depends
only on the rate of deformation; a solid body rotation of a fluid ele-
ment does not induce a stress. However, the Reynolds stresses
originate from the convection terms and as a consequence they
are not invariant under rotation. Under these circumstances the
separation of the velocity gradient into rate of deformation and
rotation appears to offer little advantage and is therefore not
adopted. To formulate a constitutive equation we first write

gu00i u00j ¼ gu00i u00j k; �;
oui

oxj

� �
ð1Þ

where nothing has been omitted from the argument of Eq. (1). The
Cayley–Hamilton theorem (Lumley, 1970) can now be used to write
the following most general expression for gu00i u00j :

gu00i u00j ¼ adij þ b
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where a; b; c;d; e are functions of k; � and the first, second and third
invariants of oui=oxj.

Eq. (2) is used as a basis for constructing a constitutive relation-
ship for the Reynolds stresses, hopefully more powerful than stan-
dard eddy viscosity models. The result is a non-linear eddy viscosity
model (NLEVM). If account is taken of dimensional homogeneity,
symmetry and the fact that gu00i u00i ¼ 2k then the following expression
can be constructed (Shih and Lumley, 1993; Shih, 1996):

gu00i u00j ¼
1
3
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where the a’s are functions of the invariants. The quantity con-
tained within ½ � on the rhs of Eq. (3) is chosen to ensure that both
sides of the equation contract to 2k.

The isotropic contribution to the stress in Eq. (3) can be ad-
sorbed into the definition of pressure so that when substituted into
the momentum equation the result is

o�q~ui

ot
þ o�q~ul~ui

oxl
¼ � op�

oxi
þ o

oxl
l o~ui

oxl
þ oul

oxi

� �� �
� o

oxl
�q a1

k2

�
o ~ui

oxl
þ o ~ul

oxi

� �
þ a2

k3

�2

o ~ui

oxk

o ~uk

oxl
þ o ~ul

oxk

o ~uk

oxi

� �"

þa3
k3

�2

o ~ui

oxk

o ~ul

oxk
þ a4

k3

�2

o ~uk

oxi

o ~uk

oxl

#
þ �qgi ð4Þ

where p� is the pseudo-pressure.
The values of k and � are obtained from the standard form of the

k–� model with the constant values C�1 ¼ 1:44; C�2 ¼ 1:92;
rk ¼ 1:0 and r� ¼ 1:3. The only modification required is to the tur-
bulence energy production rate

P ¼ � gu00mu00n
o~um

oxn
ð5Þ

which is evaluated using Eq. (3) so that
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with k, l, m, n as summation indices. An obvious modification ap-
plies to the production term in the mechanical dissipation rate
equation, which is proportional to ~�=~k times Eq. (6), least a model
constant.

The problem is now the determination of the model coefficients,
a1, a2, a3 and a4. As an aid to this a dimensionless strain parameter,
A is introduced

A ¼ k
�

o~uk

oxl

o~uk

oxl

� �1=2

ð7Þ

To determine the coefficients the following information is used:

(i) As suggested by previous work it is presumed that
clð� �a1Þ ! 0:09 as A! 0.

(ii) The measurements of anisotropy obtained in the low strain,
nearly homogeneous shear flows of Champagne et al. (1970),
see Appendix A.

(iii) Positivity of the Reynolds normal stresses.
(iv) Satisfaction of Schwarz’s inequality for the Reynolds shear

stresses.

If Eq. (3) is applied, in conjunction with the turbulence kinetic
energy equation, to nearly homogeneous shear flows then the fol-
lowing expressions can be derived for the components of the
anisotropy tensor, bij

b12 ¼
gu00v00
2k
¼ a1

2
A ð8Þ

b11 ¼
gu002
2k
� 1

3
¼ 2a3 � a4

6
A2 ð9Þ

b22 ¼
fv002
2k
� 1

3
¼ �a3 þ 2a4

6
A2 ð10Þ
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b33 ¼
gw002
2k
� 1

3
¼ �a3 þ a4

6
A2 ð11Þ

Eqs. (8)–(11) can be rearranged to yield:

� a1 ¼ cl ¼ �
2b12

A
ð12Þ

a3 ¼
4b11 þ 2b22

A2

� �
ð13Þ

a4 ¼
2b11 þ 4b22

A2

� �
ð14Þ

From Eqs. (9)–(11) it is seen that diagonal components of the
anisotropy tensor identically zero for A=0, irrespective of the values
of the model coefficients.

In the nearly homogeneous shear flow of Champagne et al.
(1970) the mean strain parameter A is found to have value around
2.9 and the values of the components of the anisotropy tensor are
found to be approximately constant with values b11 � 0:137 and
b22 � �0:088. If these are inserted into Eqs. (13) and (14) then
the following values result:

a3 ¼ 0:04395
a4 ¼ �0:0093

However, these constant values are only appropriate in this partic-
ular flow and a3 and a4 must be at least a function of A if negative
normal stresses are to be avoided in general. For example, for an
arbitrary value of the strain parameter A, Eqs. (9)–(11) with the
a’s constant givegu002

k
¼ 2

3
þ 0:0324A2 ð15Þfv002

k
¼ 2

3
� 0:02085A2 ð16Þgw002

k
¼ 2

3
� 0:01775A2 ð17Þ

While gu002 is always positive both fv002 and gw002 will become negative
at high values of mean strain. The most critical situation is for the
transverse component where negative values arise for

A >
2=3

0:02085

� �1=2

¼ 5:65

To avoid this behaviour it is necessary to assume that a3 and a4 be,
rather than constants, functions of the strain parameter, and in par-
ticular that they decrease at least as fast as A�2 for large values of A.
It is thus tentatively assumed that

a3 ¼
a3

½clðAÞ�2

 !�����
A¼2:9

½clðAÞ�2 ¼ c3½clðAÞ�2 ð18Þ

and

a4 ¼
a4

½clðAÞ�2

 !�����
A¼2:9

½clðAÞ�2 ¼ c4½clðAÞ�2 ð19Þ

where c3 � 3:6 and c4 � �0:75 as experimental results (Champagne
et al., 1970) for A ¼ 2:9 indicate a corresponding cl ¼ 0:111.

2.1. Positivity of normal stresses

If Eqs. (18) and (19) are substituted into Eqs. (9)–(11) then in or-
der to prevent fv002 and gw002 attaining negative values it is easy to
show that the function clðAÞ must obey the constraint

clðAÞ <
1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

0:5c3 � c4

s
� 0:626

A
ð20Þ
2.2. Schwarz’s inequality

The Reynolds shear stress can be expressed, Eq. (8), asgu00v00��� ���
k
¼ A � clðAÞ ð21Þ

and Schwarz’s inequality requires that the ratio

ðgu00v00 Þ2gu002 fv002 ¼ 9½clðAÞ � A�2

2þ 2c3 � c4ð Þ½clðAÞ � A�2
n o
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n o

ð22Þ

be less than unity, resulting in the condition

5c3c4 � 2 c2
3 þ c2

4

� 	
 �
½clðAÞ � A�4 þ 2 c3 þ c4½ � � 9ð Þ½clðAÞ � A�2 þ 4 > 0
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The roots of the associated equation are then
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The only physical solution results in the constraint

clðAÞ<
1
A
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2.3. Coefficient a2

The coefficient a2 is as yet undetermined, since it multiplies a
term which is zero in thin shear layers. Its determination then re-
quires consideration of more complex flows. Shih et al. (1995) uti-
lise Rapid Distortion Theory (RDT) to recover a relationship among
the coefficients, but RDT is known to have little relevance to prac-
tical flows and so the approach is not adopted here. Instead a2 is
provisionally assigned a value of zero. This can be relaxed later if
necessary.

2.4. Proposed NLEVM form

The only outstanding issue is the evaluation of a1 or equiva-
lently cl. A number of authors have proposed different expressions
for cl as a function of a strain parameter, e.g. Shih et al. (1995) and
Loyau et al. (1998), with a general feature being a value slightly
above that of the standard k� � model, i.e. cl ¼ 0:09, for moderate
strain rates (A less than 3), and an asymptotic decay as the inverse
of the strain parameter. Although the former specification has
some justification, e.g., experiments at A ¼ 2:9 indicate
cl ¼ 0:111 – see Appendix A – it has been found in the present
investigation that adopting cl > 0:09 invariably leads to an exces-
sive centreline velocity decay in jets. For this reason the following
form is proposed for cl ð¼ �a1Þ as a function of the strain
parameter

cl ¼ cl;0 ¼ 0:09 for A 6 A�

¼ cl;0 þ alðA� A�Þ3 for A� 6 A 6 A��

¼ bl=A for A > A��
ð26Þ
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where to satisfy constraints (20) and (25) the following values have
been selected:

A� ¼ 4 A�� ¼ 5

The coefficients al and bl are determined by requiring that the first
and second derivatives of cl be continuous at A� and A�� leading to

al ¼ �0:0056 bl ¼ 0:422

In summary the NLEVM coefficients are

a1 ¼ �clðAÞ; a2 ¼ 0; a3 ¼ c3½clðAÞ�2; a4 ¼ c4½clðAÞ�2 ð27Þ

with c3 ¼ 3:6 and c4 ¼ �0:75. The functional dependence of cl on A
given by Eq. (26) is plotted in Fig. 1, together with the constraints
(20) and (25), with the latter being more stringent. Both are both
shown to be satisfied. Fig. 2 shows the correlation coefficient Ruv,
i.e., the square root of Eq. (22) resulting from the proposed model;
it is shown to remain bounded with a value well below unity in all
cases, thus ensuring realisability. It is worth noting that the stan-
dard k–� model fails to obey this constraint for A larger than about
7. As a check of the performance of the proposed model, the anisot-
ropy in the high strain nearly homogeneous shear flow of Harris
et al. (1977) (see Appendix B) for which A ¼ 5:5, is considered.
The representative experimentally determined values are

b11 ¼ 0:168; b22 ¼ �0:134; b33 ¼ �0:034 ð28Þ

compared with the predicted values

b11 ¼ 0:236; b22 ¼ �0:151; b33 ¼ �0:085 ð29Þ
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As is evident the anisotropies are somewhat over predicted. This
could be corrected, but requires a more complex form than Eqs.
(18) and (19) for the coefficients a3 and a4 (i.e., c3 and c4 function
of A, rather than constant). Such an extension is not pursued in
the present context.

3. Non-linear eddy diffusivity model (NLEDM)

An approach parallelling that adopted in Section 2 is adopted
for the scalar flux. If the scalar flux is presumed to depend only
on the turbulence energy and dissipation rates and the mean veloc-
ity and scalar gradients then, analogous to Eq. (2), the following
general expression, (Lumley, 1970), can be written

�gu00i n00 ¼ b1
k2

�
o~n
oxi
þ k3

�2 b2
o ~ui

oxk
þ b3

o ~uk

oxi

� �
o~n
oxk

ð30Þ

where n represents a scalar quantity and the turbulent scalar flux is
now prescribed as a function of both the mean velocity and scalar
gradients.

As in Eq. (3) the model coefficients are, in principle, functions of
the invariants of oui=oxj and on=oxi. However, an approach similar
to that followed for the a0s will be adopted to determine the three
model coefficients, b1, b2 and b3. The criteria selected to evaluate
them in the course of the present research is described below.

First, all solutions of the exact equation for a strictly conserved
scalar variable satisfy extremum principles (Protter and Murray,
1967); the magnitude of any local extrema present in the initial
conditions must decay with time. A consequence of this is that
the maximum and minimum values of the scalar in any resulting
steady solution will occur on the boundaries of the solution do-
main. The satisfaction of this condition is clearly desirable in any
model and can be used to establish constraints on the values of
the coefficients. The precise value of the coefficients are deter-
mined by enforcing compliance of the model with measurements
of the stream wise and transverse components of the scalar flux
in equilibrium shear layers.

The equation describing the mean value of a strictly conserved
scalar, with the scalar flux given by Eq. (30) can be written in the
form

q
o~n
ot
þ q~ul

o~n
oxl
¼ o

oxl

l
r

dkl þ Ckl

� 
 o~n
oxk

" #
ð31Þ

with

Ckl � �q
k2

�
b1dkl þ b2

k
�

o ~ul

oxk
þ b3

k
�

o ~uk

oxl

� �
ð32Þ

Eq. (31) can now be used to evaluate the incremental change in n
with time at any position within the solution domain, viz.

~nðt þ dtÞ ¼ ~nðtÞ þ o~n
ot

dt

¼ ~nðtÞ þ 1
q

o

oxl

l
r

dkl þ Ckl

� 
 o~n
oxk

" #
� ~ul

o~n
oxl

 !
dt ð33Þ

To ensure conformity with the extremum principle the Eq. (31) can
first be written in principal axes whereby Cij becomes

Caa ¼ q
k2

�
b1 þ ðb2 þ b3Þ

k
�

o ~ua

oxa

� �
ð34Þ

with no summation implied on a.
At an extrema o~n=oxi ¼ 0 8 i and the change in n over a time

interval dt at the extrema is given by

~nðt þ dtÞ ¼ ~nðtÞ þ o~n
ot

dt ¼ ~nðtÞ þ 1
q
X3

a¼1

l
r
þ Caa

� 
 o2~n
oxaoxa

dt ð35Þ
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At high turbulence Reynolds numbers l
r
 C so that compliance of

the solutions of Eq. (31) with the extremum principle then requires

Caa P 0 a ¼ 1;2;3 ð36Þ

This clearly imposes conditions on the values of b1, b2 and b3. In
general the coefficients must satisfy

b1 þ b2 þ b3ð ÞA P 0 ð37Þ

To develop matters further it will be presumed that b1 > 0 and that
b2 ¼ �b3. This latter choice is made purely on the grounds of sim-
plicity and the presumption can be relaxed later if found to be nec-
essary. The conditions imposed by Eq. (36) are then automatically
satisfied.

To determine the values of the two coefficients the model will
be applied to a two-dimensional equilibrium thin shear layer. In
two-dimensions the components of the scalar flux are

�gu00n00 ¼ k2

�
b1

o~n
ox
þ b2

k
�

o~u
ox

o~n
ox
þ o~u

oy
o~n
oy

 !
� o~u

ox
o~n
ox
þ o~v

ox
o~n
oy

 !" #( )
ð38Þ

�gv00n00 ¼ k2

�
b1

o~n
oy
þ b2

k
�

o~v
ox

o~n
ox
þ o~v

oy
o~n
oy

 !
� o~u

oy
o~n
ox
þ o~v

oy
o~n
oy

 !" #( )
ð39Þ

In a thin shear layer o~u=ox, o~v=ox and o~v=oy are negligible compared
with o~u=oy while o~n=ox is negligibly small relative to o~n=oy. Thus

� gu00n00 ’ b2

~k3

~�2

o~u
oy

o~n
oy

ð40Þ

� gv00n00 ’ b1

~k2

~�
o~n
oy

ð41Þ

In equilibrium shear layers it is known that experimental measure-
ments of the y-component of the scalar flux are well reproduced by
the expression

�gv00n00 ¼ cl

rt

k2

�
o~n
oy

ð42Þ

with Cl ¼ 0:09 and rt ¼ 0:7. Thus to make Eq. (42) consistent with
Eq. (41)

b1 ¼
cl

rt
ð43Þ

The relationship (42) is relevant to measurements at relatively low
strain rates. However, in the framework of the present model it is
assumed that its validity can be carried over a wider range of strain
rates by adopting cl as a function of the strain rate parameter, A as
defined by Eq. (26). With this proviso the coefficient b1 is presumed
given by

b1 ¼
clðAÞ
rt

ð44Þ

This function is plotted, as a function of the strain parameter A, in
Fig. 3.

To determine b2 use will be made of the experimental observa-
tion that the ratio of the two components of the scalar fluxes is
approximately constant in near equilibrium flows; namelygu00n00gv00n00
�����

����� � 2 ð45Þ

Combining Eqs. (40) and (41) gives for this ratiogu00n00gv00n00
�����

����� ¼ b2

b1

k
�

o~u
oy

ð46Þ
For an equilibrium flow the velocity gradient can be replaced by the
strain parameter, Eq. (7) so that Eq. (46) can be written as

b2 ¼ �2
b1

A
ð47Þ

However this would entail b2 !1 for A! 0. A more cautious
choice can be obtained if use is made of the finding thatffiffiffiffiffi

cl
p

ko~u=oy
�

’ 1 ð48Þ

so that in equilibrium flows equation (46) can also be written

b2 ¼ �2b1
ffiffiffiffiffi
cl

p
ð49Þ

As above it is assumed that the validity of Eq. (49) can be carried
over to a wider range of strain rates by adopting cl as a function
of the strain rate parameter so that

b2 ¼ �2
½clðAÞ�3=2

rt
ð50Þ

The coefficient b2 is also plotted in Fig. 3 as a function of the strain
parameter. Finally the third coefficient is determined as

b3 ¼ �b2 ð51Þ

Note that adopting Eq. (30) to represent the scalar fluxes entails
that the production term in the scalar variance equation

Pfn002 ¼ �2 gu00kn00 o~n
oxk

ð52Þ

must be expanded as

Pfn002 ¼ þ2b1
k2

�
o~n
oxl

o~n
oxl
þ 2

k3

�2 b2
o ~ul

oxk
þ b3

o ~uk

oxl

� �
o~n
oxk

o~n
oxl

ð53Þ

though with the condition equation (51) the second term on RHS
turns out to be identically zero.

3.1. Joint realisability

It will now be checked that the above NLEDM satisfies another
crucial requirement of the closure approximation if solutions are to
have physical significance.

Schwarz’s inequality for the stream wise and transverse Rey-
nolds fluxes requires

ðgu00n00 Þ2 6gu002 � fn002 ð54Þ

ðgv00n00 Þ2 6 fv002 � fn002 ð55Þ

where fn002 is the scalar variance. In a mixing layer with a single non-
zero component of the relevant velocity gradient, the normal com-
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ponents of the Reynolds stress can be expressed, according to the
NLEVM, by Eqs. (15) and (16). As far as the scalar variance is con-
cerned, in an equilibrium mixing layer this can be obtained from
a balance between the scalar production and dissipation rates,
which with the linear relaxation model leads to

2b1
k2

�
o~n
oy

 !2

¼ Cd
�fn002

k
ð56Þ

where Cd is a model constant with the commonly accepted value

Cd ¼ 2:0

This leads to the following expression for the scalar variance:

fn002 ¼ 2
b1ðAÞ

Cd

k3

�2

o~n
oy

 !2

ð57Þ

Then,with consideration of Eqs. (40), (41), (15) and (16), Schwarz’s
inequalities can be recast as

½b2ðAÞ�
2

~k6

~�4

o~u
oy

� �2
o~n
oy

 !2

6
2
3
þ 1

3
2c3 � c4ð Þ � ½clðAÞ � A�2

� �
�

2
b1ðAÞ

Cd

~k4

~�2

o~n
oy

 !2

ð58Þ

½b1ðAÞ�
2

~k4

~�2

o~n
oy

 !2

6
2
3
þ 1

3
2c4 � c3ð Þ � ½clðAÞ � A�2

� �
�

2
b1ðAÞ

Cd

~k4

~�2

o~n
oy

 !2

ð59Þ

After some manipulation Eqs. (59) and (58) result in the respective
constraints

b1ðAÞj j 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Cd

2
3
þ 1

3
2c4 � c3ð Þ � ½clðAÞ � A�2

� �s
ð60Þ

b2ðAÞj j < 1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Cd

b1ðAÞ
2
3
þ 1

3
2c3 � c4ð Þ � ½clðAÞ � A�2

� �s
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The correlation coefficients between u and n and between v and n

Run ¼
gu00n00��� ���

gu002 � fn002h i1=2 ð62Þ

Rvn ¼
gv00n00��� ���

fv002 � fn002h i1=2 ð63Þ

are plotted in Fig. 4 for 0 6 A 6 10 for the present choice of the coef-
ficients and indicate that the model under consideration ensures
realisable solutions in this respect under all circumstances. It can
be noted that the correlation coefficients can attain quite high val-
ues for highly strained flows. While such high A’s are likely to oc-
cur1 only rarely in statistically stationary flows, they may well
occur during transients, particularly for an injudicious choice of ini-
tial conditions. The model formulated should prevent the appear-
ance of unphysical and potentially destabilising solutions in these
circumstances.
1 In the near wall region of a fully turbulent boundary layer A � 3:3.
4. Test cases

In this section the performance of the closures formulated in
Section 2 and 3 is investigated through application to swirling
flows and comparison of the results with experimental data. In or-
der to characterize the different test cases three dimensionless
groups are considered.The strength of swirl is characterized by
the swirl number, defined as

S ¼ 1
Re

R Re

0 qr2~u ~wdrR Re

0
�qr~u2 dr

ð64Þ

where Re denotes the radius of the inlet duct. Swirl number accord-
ingly represents the ratio of the axial flux of angular momentum to
the axial flux of linear momentum (~u and ~w denote the stream-wise
and tangential mean velocity components). The swirl number has a
major effect on determining the flow pattern in purely swirling
flows (Chigier and Chervinsky, 1967; Chigier, 1972; Syred and
Beér, 1974; Lilley, 1977): with increasing S, the jet spreads progres-
sively outwards, until for a critical value of around 0.6 recirculation
sets on, with the appearance of a toroidal reverse flow region. The
critical value may be different for flows subjected to very large den-
sity variations, see Section 4.2.

For flows featuring a central jet surrounded by a swirling co-
flow (as in one of the test cases considered) an axial momentum
ratio is also defined

J ¼
R Rj

0 �qr~u2drR Re

Rj
�qr~u2dr

ð65Þ

where Rj is the radius of the centre jet nozzle. The presence of a cen-
tral, non-swirling jet can suppress or displace the recirculation re-
gion for high values of swirl numbers, S.

In combusting flows the density varies over a wide range due to
both temperature and molar mass changes, the latter being due to
varying fluid composition. Inert flows may also experience variable
density effects, in this case either because of differing molar
masses or temperatures of the inflowing central jet and co-flow
fluids. It is then useful to introduce a density ratio

! ¼
qj

qo
ð66Þ

where the subscript j denotes conditions in the central nozzle and
where the subscript o indicates conditions in the incoming (swirl-
ing) co-flow. In combusting flows oxidizer generally enters as a
co-flow. The density ratio strongly affects the mixing of the jet
and the swirling co-flow.
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In choosing the appropriate test cases for comparison, attention
has been directed to ensure that they:

– include both inert and reacting flows (i.e., jets and flames);
– encompass a range of swirl numbers;
– encompass a range of axial momentum ratios;
– encompass a range of density ratios;
– that detailed measurements of both mean quantities and sec-

ond-moments (Reynolds stresses and scalar fluxes) are
available;

– that measurements are reported at several downstream
stations.

With these considerations in mind two test cases have been
identified:

(i) inert jets issuing into swirling air (So et al., 1984; So and
Ahmed, 1987), with a swirl number S ¼ 2:25, momentum
ratios J spanning the range from 0.032 to 0.475 and density
ratios ! covering the range 0.228, 1 and 1.52;

(ii) swirling hydrogen/air flames (Stårner and Bilger, 1986), with
swirl numbers S = 0.02, 0.6 and associated momentum ratios
J = 36.8, 0.412 respectively, while the density ratio ! is
0.069.

These test cases are discussed in detail in the next two subsec-
tions. Numerical simulation are performed by means of the finite-
volume code BOFFIN (Jones, 1994).

4.1. Swirling jets (So et al., 1984; So and Ahmed, 1987)

An extensive experimental study on (inert) jets injected into co-
flowing swirling air is reported by So et al. (1984), So and Ahmed
(1987). The case has been the subject of a number of previous stud-
ies using full second moment turbulence closures, see for example
(Hogg and Leschziner, 1989; Jones and Pascau, 1989). The swirl
number is fixed at 2.25, while the momentum ratio number is var-
ied between 0.032 and 0.475 in the test cases selected for compar-
ison in the present investigation; the density ratio assumes the
values 0.228, 1.0, 1.52 through use of different jet fluids. The jet
nozzle comprises a sudden expansion 12.7 mm upstream of the
discharge plane, introduced in order to ensure that the jet flow is
fully turbulent even for jet Reynolds numbers close to the transi-
tional value. The jet diameter at the discharge plane is
Dj ¼ 8:73 mm and this is taken as a reference length for these test
cases. The nozzle is surrounded by an annulus of inner diameter
53.18 mm and outer diameter Do ¼ 125 mm through which swirl-
ing air flows. The swirl is generated by a flat vane swirler with
vanes at an angle of 66� giving a swirl number of 2.25. The Rey-
nolds number of the co-flowing swirling air is maintained constant
in all cases with a value of 54,900 (based on the average velocity
across the tube of diameter Do). Both the central jet and annulus
flow issue into a duct of diameter Do ¼ 125 mm.

In the numerical simulations reported below, the inflow bound-
ary conditions are estimated on the basis of velocity measurements
taken at an axial location close to the discharge plane. Not all of the
large number of conditions measured provide suitable test cases,
either because there are insufficient measurements available or
that negative stream wise velocities are reported very close to
the inlet plane. Accordingly the cases that are retained for valida-
tion are as follows:

– air jets (unity density ratio):
� uj ¼ 25:4 m=s, resulting in Rej ¼ 14380, J = 0.068 (So et al.,

1984: case 31);
� uj ¼ 66:8 m=s, Rej ¼ 37820, J = 0.475 (So et al., 1984: case
32);
– helium/air jets:
� ! ¼ 0:228, Rej ¼ 2970, uj ¼ 36:5 m=s, J = 0.032 (So et al.,

1984: case 42);

– carbon dioxide jets, ! ¼ 1:52:
� uj ¼ 25:4 m=s, Rej ¼ 28430, J = 0.104 (So et al., 1984: case

51);
� uj ¼ 54:0 m=s, Rej ¼ 60440, J = 0.472 (So et al., 1984: case 52).
where uj denotes the jet bulk velocity. It is to be noted that the
inflowing helium/air jet is fully turbulent in spite of the relatively
low jet Reynolds number as a result of the upstream sudden
expansion of the nozzle.

For the simulations inflow profiles are derived from measure-
ments taken at station x=Dj ¼ 1 for cases 31, 32, 51 and 52, and
at station x=Dj ¼ 3 for case 42. There are no measurements of the
mean and rms profiles of the radial velocity component at these
stations. The mean radial velocity is thus presumed to be negligible
while the rms is set equal to that of the tangential component. The
turbulence energy dissipation rate at the inflow boundary is
specified on the basis of estimated dissipation length scales. The
sensitivity of predictions to the specified dissipation rates at inflow
boundaries is small for all the flows presently considered. Provid-
ing sensible values are chosen the only major influence is on the
predicted length of the potential core. In all cases the computed
results to be presented were obtained using a 150	 100 grid in
the axial and radial directions respectively. The grid is slightly
stretched, with grid expansion ratios of 1.015 in the axial direction
(1.02 for case 31) and 1.02 in the radial one. Computations with
finer and coarser grids have demonstrated that the results
described below are definitely grid-independent.

Fig. 5 shows a comparison of predictions with measurements of
the radial profiles of the stream-wise and tangential mean
velocities and the two corresponding rms velocities, at several
axial stations for the central air jet case with uj ¼ 25:4 m=s. Results
are presented against a radial coordinate, made dimensionless
with respect to both jet diameter Dj (lower scale) and the external
diameter Do (upper scale). For the remaining cases only the mean
profiles of stream-wise and tangential velocity, Figs. 6–9, are
shown; the level of agreement achieved between measurements
and computations is closely similar to that displayed in Fig. 5. Test
cases 31 and 32 are constant-density, hence only a comparison
with the results obtained with the standard k–� and NLEVM is con-
sidered. The remaining cases involve variable-density and results
with a full range of models are shown. The results compared corre-
spond to: k–�; k–� for velocity with NLEDM for the scalar; NLEVM
for the velocities with k–� for the scalar and the complete model,
i.e., NLEVM with NLEDM. The model used for the scalar flux
appears to exert very little influence on the velocities, both mean
and rms, but this is almost certainly due to the density ratios under
consideration being relatively close to unity.

Due to the relatively limited density variations, averages are
indicated with the over bar conventionally associated with Rey-
nolds averaging, while the computational results imply Favre-aver-
ages (density weighted averages). The difference is generally found
to be quite small for the velocity components; as an illustration
measurements (LaRue and Libby, 1977) in a helium–air mixing
layer with a density ratio as small as 0.138 exhibit a difference be-
tween the density weighted and unweighted mean velocities of
less than 1%. The difference can however be more substantial for
scalar quantities. Since the main purpose is to compare the results
obtained with the various models (and space limitations prevent a
more detailed discussion) the comparisons are reported in the fol-
lowing concise form for each of the different cases:
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– Case 31:
� u appears to be greatly improved by NLEVM, especially close

to the axis in the near field.The standard k–� model greatly
over predicts the initial velocity decay rate on the centreline,
while predicting too high velocities at the last measuring sta-
tion.The NLEVM appears to correctly reproduce the observed
trends,resulting in an improved agreement alsooff-axis at
downstream stations;

� w results are more or less the same for both k–� and NLEVM,
the former performing somewhat better in the near field, the
latter in the far field;

� ðu02Þ1=2 is uniformly improved with NLEVM compared with
the k-� model

� ðw02Þ1=2 same as above.

– Case 32:
� u appears to be somewhat improved by NLEVM, both in the

near and far fields;
� w is about the same for the two models;
� ðu02Þ1=2 is better reproduced by NLEVM, except at the axis in

the near field (where neither models perform particularly
well);

� ðw02Þ1=2 is also generally better with NLEVM, except at the
axis in the near field.

– Case 42:
� u the performance of k–� and NLEVM is comparable, the for-

mer being somewhat better at the axis, the latter off-axis, but
both models fail to reproduce the recirculation bubble
located around r=Dj ¼ 2;
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Fig. 10. Hydrogen/air swirling and non-swirling flames, comparison of the decay of the
various models.
� w is somewhat better predicted by NLEVM in the far field;
� ðu02Þ1=2 is better predicted with NLEVM, best with NLEVM

and NLEDM;
� ðw02Þ1=2 same as above.

– Case 51:
� u is markedly better with NLEVM;
� w is somewhat better predicted by NLEVM;
� ðu02Þ1=2 is markedly better predicted by NLEVM, especially in

the near field;
� ðw02Þ1=2 is slightly better predicted by NLEVM at station

x=Dj ¼ 20, somewhat worse at x=Dj ¼ 40.

– Case 52:
� u is again markedly better with NLEVM (though in the near

field NLEDM give a somewhat reduced level of agreement
at the axis);

� w is also somewhat better predicted by NLEVM;
� ðu02Þ1=2 poorly predicted by both models, nonetheless NLEVM

appears to give somewhat better agreement off–axis;
� ðw02Þ1=2 is somewhat better predicted by NLEVM at station

x=Dj=20, slightly worse at x=Dj ¼ 40.

Taken together the results obtained with the proposed non lin-
ear eddy viscosity and diffusivity models appear, on the whole, to
be encouraging. As noted by So and Ahmed (1987), an efficient
mixing enhancement by swirl requires that the heavier fluid is in-
jected from the central pipe (i.e., as a jet, cases 51 and 52) because
in this case the jet fluid is pushed radially outward by centrifugal
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force. In the reverse situation (lighter jet fluid, case 42), the jet
tends instead to be confined close to the centreline, thereby inhib-
iting mixing of the two streams.

4.2. Swirling flame (Stårner and Bilger, 1986)

The experiments carried out by Stårner and Bilger at the Univer-
sity of Sydney (Stårner and Bilger, 1986) – see also (Stårner and Bil-
ger, 1989), represent the only test case known to the authors of a
swirling flow involving scalar mixing that reports detailed mea-
surements of all three components of the scalar flux together with
the mean scalar. Even in these very detailed experiments there is a
lack of certain information for validation, as radial profiles of mean
mixture fraction are not reported. The flow comprises a hydrogen
jet, injected through a central nozzle of inner diameter 9.9 mm at
a bulk velocity of 139 m/s (with a maximum at the centreline of
177.1 m/s), giving a jet Reynolds number of 13,000 together with
air supplied via a surrounding annulus (inner diameter
10.72 mm, outer diameter 18.4 mm) with a swirling motion (gen-
erated by vanes at 45� to the axial direction – see below for the
bulk velocity). A further outer region (inner diameter 19.1 mm,
bounded by a square duct of 305 mm side) supplies unswirled
air at a bulk velocity ue=12 m/s. Two operating conditions are con-
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Fig. 11. H2-air swirling flame (S = 0.6), comparison of axial mean excess velocity, axial
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sidered, an essentially non-swirling case with S ¼ 0:02 (when the
bulk velocity of swirling air is limited to 4 m/s), and a swirling
one with S ¼ 0:60 (bulk velocity of swirling air 37.8 m/s). The latter
value of S usually corresponds to the onset of recirculation; how-
ever, in the present configuration no flow reversal is observed.

Measurements include, for the swirling case, inflow profiles
(at x=Dj=0.2) of the three mean velocity components, and their
intensity, so that inflow boundary conditions are unambiguous.
Similar profiles are not available for the non swirling case, giving
rise to some uncertainty in the inflow conditions to be applied.
In the present simulations the inflow velocity profile for
S = 0.02 is obtained from the corresponding swirling one, by scal-
ing all velocities in the annulus by a factor 4/37.8. Turbulence
energy dissipation rate inflow profiles are, as previously,
specified in terms of estimate length scales. For combustion a
thermo-chemical closure model based on the conserved scalar
approach with a presumed b-pdf is adopted to describe hydro-
gen-air combustion. As for the previous case predictions are
shown for the following model combinations: standard k–�; k–
� + NLEDM; NLEVM + k–� and NLEVM + NLEDM. A 150	 100 grid
in the axial and radial directions is again used with a moderate
grid expansion ratios (1.002 in the axial direction, 1.012 in the
radial one).
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The inverse centreline velocity, expressed in the form

u0j

u0
¼ uCL � ue½ �x¼0

uCL � ue½ �x
is plotted in Fig. 10.

The results for the full range of modelling options considered
above are shown. Experiments indicate that the centreline velocity
of the swirling flame has an initial decay rate much steeper than
the corresponding non swirling flame. Predictions by the standard
k–� show that this effect is poorly reproduced in the simulations,
this being one of its well-known deficiencies. Instead, predictions
by the NLEVM show that this model is able to reproduce the behav-
iour for swirling flows quite correctly, thus marking an important
improvement over standard modelling. As far as scalar transport
modelling is concerned, it is seen to play a minor role as far as
the velocity field is concerned, at least in this case. However, the
results obtained with the combined NLEVM and NLEDM exhibit
significant difference for swirling and non swirling flow in the far
field. Unfortunately, measurements of the non swirling case are
limited to the region up to x=D ¼ 40, and do not shed light on
the issue.

Figs. 11 and 12 display a comparison of measured and predicted
radial profiles taken at three axial stations located at x=Dj ¼ 26, 40,
0.0
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Fig. 12. H2-air swirling flame (S = 0.6), radial profiles of scalar fluxes at different axial loc
k–� + NLEDM, —–—- NLEVM, — � �— � �— NLEVDM.
80, for the swirling case only. Results are presented in Cartesian
form, rather than axisymmetric, to illustrate the asymmetry in
some of Reynolds stress and scalar flux components as well as
experimental scatter. Fig. 11 shows radial profiles of the dimen-
sionless mean stream wise excess and tangential velocities, i.e.,
the quantities

~u0

u0j
¼

~u� ue½ �r;x
uCL � ue½ �x¼0

¼
~u� ue½ �r;x
165:1

~w
u0j
¼

~w½ �r;x
uCL � eue½ �x¼0

¼
~w½ �r;x

165:1

For the stream-wise mean velocity a markedly improved prediction
by NLEVM is evident near the centreline, especially at the first sta-
tion, consistently with the results of Fig. 10. However in the case of
the tangential mean velocity the predictions with k–� and NLEVM
are about the same accuracy compared with measurements with
a somewhat unclear influence of scalar transport modelling. Also
shown in Fig. 11 are the profiles of the stream-wise rms intensity
of the normal stress gu002 and the shear stress gu00w00 . The normal
stress is more accurately reproduced by the NLEVM as are, though
not shown, the profiles of fv002 and gw002 , this being a possible key
to the markedly improved mean profiles arising with the model.
The shear stress component gu00w00 , which is predicted to be identi-
0 20 40 60 80 100
x / D

ations and centreline mean mixture fraction. � measurements, ———- k–�, — � — �—
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cally zero by the k–� model, is reproduced by NLEVM, at least qual-
itatively. Though not presented here – because of space limitations
– the shear stresses gu00v00 and gv00w00 resulting from the two models do
not show any significant differences.

Fig. 12 displays the predicted and measured axial profile of the
mean mixture fraction along the centreline and radial profiles of
the stream-wise, radial and tangential components of the scalar
flux vector, respectively, i.e., those quantities which are the pri-
mary focus of the NLEDM. Unfortunately, measured radial profiles
of mean mixture fraction are not available. The predictions of the
stream-wise scalar flux with the standard k–� model are seen to
grossly underestimate this component, and further do not show
any sign of the double–peaked structure reported in the experi-
ments. The nonlinear models in contrast do reproduce both the
experimentally observed order of magnitude and trends. The dif-
ferences between the computational resulting from the NLEDM
for the scalar fluxes but with the k–� retained for the Reynolds
stresses and those arising from the full non linear model are seen
to be relatively minor. The greatly improved performance of the
NLEDM is almost certainly a consequence of ensuring that the con-
dition corresponding to Eq. (45) is satisfied in equilibrium shear
flows. The differences between the predictions with the linear
and the nonlinear models is much smaller for the radial compo-
nent of the scalar flux. Predictions with the nonlinear models look
somewhat better at the first station, while experimental uncertain-
ties (as apparent from asymmetry of measurements) preclude a
thorough comparison at the second station; at the third station
the performance of both models is similar. As far as the tangential
component of the scalar flux is concerned, the behaviour is some-
what ambiguous. Experiments show positive values above the axis
and vice versa, with a sort of a kink at the centreline. The k–�mod-
el as anticipated returns identically zero values of this component.
The nonlinear models do return nonzero values of the tangential
flux, but with the wrong sign over most of radial positions; only
in the outermost part of the flow field (beyond r=D 
 3) do the pre-
dicted fluxes exhibit the correct sign and, to some extent, magni-
tude. It would seem that the wrong sign close to the axis may be
brought about by an overestimated amplitude of the above men-
tioned kink. At any rate, the tangential flux presumably plays a
minor role in combustors with a close-to-axisymmetric geometry.
In the case of the mean mixture fraction it is seen that nonlinear
models reproduce the initial decay somewhat better, whilst the re-
verse is true further downstream. The initial trend is consistent
with the observed initial improvement in stream wise and radial
scalar fluxes brought about by nonlinear models. The downstream
trend is less easily explained in the absence of radial mean scalar
measurements. In summary it can be said that for scalar fluxes
the proposed nonlinear model results in significantly improved
performance in the upstream part of the flow, while further down-
stream results are closer to those given by standard models.
5. Conclusions

A non-linear eddy viscosity/diffusivity model for turbulent
flows has been formulated, featuring quadratic constitutive rela-
tionships for both Reynolds stresses and scalar fluxes. The model
coefficients have been determined by enforcing compliance with
experimental data obtained in simple and generic turbulent flows
and by ensuring that the model generates realisable solutions for
both the velocity and scalar fields. This is achieved, in part, by mak-
ing the coefficients depend upon an appropriately defined strain
parameter. The resulting models have been applied to a wide range
of swirling jet flows and flames for which extensive experimental
data is available. A comparison of the computational results with
this data suggests that the formulated models lead to significantly
improved (and substantially improved in some cases) predictions
compared with those that can be achieved with the standard k–�
model. However, some areas remain in which further investiga-
tions are desirable. These are related to:

(i) the far-field behaviour of the models – see Fig. 10.
(ii) the degradation of the centre-line mean conserved scalar

with NLEDM for swirling flames (despite greatly improved
scalar flux profiles) – see Fig. 12.

A major positive feature of the proposed model form is that it
appears to be robust and gives rise to smooth and rapidly converg-
ing simulations; a feature almost certainly due to the ‘realisable’
nature of the formulation. Further work should involve evaluating
the performance of the model under a wider range of flow condi-
tions, i.e., not restricted to confined swirling flows.
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Appendix A

Champagne et al. (1970) consider an equilibrium shear layer
with mean velocity gradient

o~u
oy

���� ���� ¼ 12:9 s�1

The normal components of the Reynolds stress at the centreline can
be recovered after the ratiosffiffiffiffiffiffiffi

u02
p

Uc
¼ 0:018;

ffiffiffiffiffiffi
v02

p
Uc
¼ 0:013;

ffiffiffiffiffiffiffi
u02

p
Uc
¼ 0:014

where Uc = 12.4 m s�1 is the mean centreline velocity. The turbulent
kinetic energy then results as

k ¼ 0:05297 m2 s�2

while the viscous dissipation rate is estimated by the authors,
on the basis of equilibrium between production and dissipation,
to be

� ¼ 0:235 m2 s�3

The strain parameter for this case is accordingly identified as

A ¼ k
�

o~u
oy

���� ���� ¼ 2:908

The measured Reynolds shear stress is reported as

�u0v0
U2

c

¼ 0:000111

and cl (¼ �a1) can accordingly be determined, after Eq. (8) as

cl;1 ¼
1
A
ju0v0j

k
¼ 1

A
u0v0
U2

c

U2
c

k
¼ 0:111

The anisotropies of the normal components are

b11 ¼
u02
2k
� 1

3
¼ 0:1369; b22 ¼

v02
2k
� 1

3
¼ �0:0881;

b33 ¼
w02
2k
� 1

3
¼ �0:0489
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Appendix B

Harris et al. (1977) consider a shear layer with P=� ¼ 1:8 and
mean velocity gradient

o~u
oy

���� ���� ¼ 44:0 s�1

The normal components of the Reynolds stress are reported asffiffiffiffiffiffiffi
u02

p
¼ 0:641 m s�1;

ffiffiffiffiffiffi
v02

p
¼ 0:404 m s�1;

ffiffiffiffiffiffiffi
u02

p
¼ 0:495 m s�1

Accordingly, the turbulent kinetic energy is k = 0.4096 m2 s�2, while
the viscous dissipation rate is estimated by the authors from the
turbulent kinetic energy equation as

� ¼ 3:28 m2 s�3

The strain parameter for this case is accordingly identified as

A ¼ k
�

o~u
oy

���� ���� ¼ 5:494

The measured Reynolds shear stress is reported as

�u0v0 ¼ 0:1217 m2 s�2

and cl (¼ �a1) can accordingly be determined, after Eq. (8) as

cl;2 ¼
1
A
j u0v0 j

k
¼ 0:054085

The anisotropies of the normal components are

b11 ¼
u02
2k
� 1

3
¼ 0:1683; b22 ¼

v02
2k
� 1

3
¼ �0:1341;

b33 ¼
w02
2k
� 1

3
¼ �0:0342
Appendix C

The total (molecular plus turbulent) scalar flux is denoted as f,
then

fi ¼
l
r

o~n
oxi
� �qgu00i n00

with rn indicating the molecular Prandtl/Schmidt number. The ith
component of f can be modelled, following (30), in the form

fi ¼
l
r
þ b1 �q

k2

�

 !
o~n
oxi
þ �q

k3

�2 b2
o ~ui

oxk
þ b3

o ~uk

oxi
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o~n
oxk

and with a simple manipulation the scalar derivative can be taken
out to give

fi ¼
l
r
þ b1 �q

k2

�

 !
dik þ b2 �q

k3

�2
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oxk
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" #
o~n
oxk

with dik indicating Kronecker’s operator. This can be formally recast
as the product of a suitably defined tensorial effective diffusivity Cik

and the mean scalar gradient vector

fi ¼ Cik
o~n
oxk

The components of Cik turns out to be (in cylindrical coordinates
x; h; r, with corresponding velocity components u; v;w for ease of
reference)
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The scalar diffusion term at the RHS of the mean scalar equation
takes therefore the form
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This expression must be compared to the one holding when the
standard gradient transport is adopted:
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